A solution to the generation scheduling problem in power systems with large-scale wind farms using MICA

نویسندگان

  • Arash Mahari
  • Kazem Zare
چکیده

This paper presents a novel solution, based on the Imperialistic Competition Algorithm (ICA), in order to determine the feasible optimal solution of the Generation Scheduling (GS) problem, in power systems with large scale wind farms. The reserve requirement, load balance and wind power availability constraints are considered in this work. In order to solve a highly constrained GS problem, a modified version of ICA is introduced to improve the initialing new countries and assimilation operators of ICA. The proposed MICA is applied on different test systems, with different wind energy penetration level. The results are compared with other methodologies and the comparison demonstrates the validity and efficiency of the proposed method, which results in near optimal schedules, while considering different equality and inequality constraints. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation Scheduling in Large-Scale Power Systems with Wind Farms Using MICA

The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...

متن کامل

Multi Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power

Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...

متن کامل

Scheduling security constraint unit commitment for power system including stochastic wind power generation

This paper introduces a new approach for scheduling security constraint unit commitment (SCUC) including wind farms. Because of uncertainty in wind power production, we tried to develop a new method for incorporating wind power generation in power plant scheduling. For this, wind power generation modeled with unit commitment in a non-linear optimization problem and simulated by submitting diffe...

متن کامل

Security-Constrained Unit Commitment Considering Large-Scale Compressed Air Energy Storage (CAES) Integrated With Wind Power Generation

Environmental concerns and depletion of nonrenewable resources has made great interest towards renewable energy resources. Cleanness and high potential are factors that caused fast growth of wind energy. However, the stochastic nature of wind energy makes the presence of energy storage systems (ESS) in wind integrated power systems, inevitable. Due to capability of being used in large-scale sys...

متن کامل

Two-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy

The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016